Tag: magnetic nanoparticles

Assoc. Prof. Dr. Kanlaya Katewongsa delivers a seminar to the N&N group

Assoc. Prof. Dr. Kanlaya Katewongsa visited the Nanoparticles and Nanocomposites Group from June 12 – 14. Katewongsa is an Associate Professor in the Department of Biochemistry at Mahidol University (Thailand) and holds an adjunct role at the School of Materials Science and Innovation. She delivered a seminar on June 12 called In vitro Studies of Riboflavin Functionalized Magnetic Nanoparticles for Breast Cancer Delivery.

Continue reading

Accepted Manuscript in Physical Chemistry Chemical Physics on hyperthermia


The article Anticipating hyperthermia efficiency of magnetic colloids by a semi-empirical model: a tool to help medical decisions(Marcela B. Fernández van Raap, Diego Fernando Coral Coral, Siming Yu, Guillermo Arturo Muñoz, Francisco Sánchez and Anna Roig) has been just accepted in Physical Chemistry Chemical Physics (RSC) DOI: 10.1039/C6CP08059F and is now available online. 

This paper is the result of a collaboration with the Instituto de Física La Plata (IFLP- CONICET) at the Universidad Nacional de La Plata (UNLP) in Argentina

Congratulations!

Abstract:

Magnetic hyperthermia, a modality that uses radio frequency heating assisted with single-domain magnetic nanoparticles, is becoming established as a powerful oncological therapy. Much improvement in nanomateriales development, to enhance their heating efficiency by tuning the magnetic colloids properties, has been achieved.

However, methodological standardization to accurately and univocally determine the colloids properties required to numerically reproduce specific heating efficiency using analytical expressions still holds.Thus, anticipating the hyperthermic performances of magnetic colloids entails high complexity due to polydispersity, aggregation and dipolar interaction always present in real materials to a more or lesser degree.

Here, by numerically simulating experimental results and using real biomedical aqueous colloids, we analyse and compared several approaches to reproduce experimental specific absorption rate values. Then, we show that relaxation time, determined using a representative mean activation energy consistently derived from four independent experiments accurately reproduces experimental heating efficiencies.

Moreover, the so-derived relaxation time can be used to extrapolate the heating performance of the magnetic nanoparticles to other field conditions within the framework of the linear response theory. We thus present a practical tool that may truly aid the design of medical decisions.

 

First accepted manuscript of 2017, in CHEMISTRY – A European Journal


A recent manuscript entitled “A recoverable ruthenium aqua complex supported onto silica particles: an efficient epoxidation catalyst“, by M. Isabel Romero, Ingrid Ferrer, Xavier Fontrodona, Anna Roig and Montserrat Rodríguez, has been accepted in CHEMISTRY – A European Journal (Accepted manuscript online: 11 January 2017; DOI: 10.1002/chem.201604463).

This article is the product of a collaboration with the Group of Catalysis and Sustainability of the University of Girona

The article reports the synthesis and catalytic performance of hybrid materials formed by a molecular ruthenium aqua complex anchored onto silica mesoporous and silica coated magnetic particles. The catalytic results and the reutilization of these hybrid materials highlight their performance in the epoxidation of alkenes.

Abstract

The preparation and characterization of new complexes with a phosphonated trpy ligand (trpy-P-Et) and a bidentate pyridylpyrazole (pypz-Me) ligand, with formula [RuII(trpy-P-Et)(pypz-Me)X]n+ (X = Cl, n= 1, 2; X=H2O, n=2, 3) is described, together with the anchoring of 3 onto two types of supports: mesoporous silica particles (SP) and silica coated magnetic particles (MSP). The aqua complex 3 is easily obtained through reflux of 2 in water and displays a bielectronic Ru(IV/II) redox process. It has been anchored onto SP and MSP supports through two different synthetic strategies, yielding the heterogeneous systems SP@3 and MSP@3 that have been fully characterized by IR, UV-vis, SEM, CV and DPV. Catalytic olefin epoxidation has been tested with the molecular complex 3 and the SP@3 and MSP@3 heterogeneous counterparts, including the reuse of the heterogeneous systems. The MSP@3 material can be easily recovered by a magnet facilitating their reusability.

Download article.

 

Welcome to Si Ming Yu!

South_China_University_of_Technology_logoSi Ming has joined us for the next three years as a CSC fellow. He is a gradute in Food Engineering from the South China University of Technology in Guangzhou and will  prepare a Ph.D. on the Interactions in Three-dimensional environments of Nanoparticles and Cells under the supervision of Anna Laromaine. We wish him  a great success with his work and an enriching personal experience among us.