Tag: new paper

Hot from the press: Two more published papers!

We congratulate two N&N researchers for two new publicationsMarti Gich for his third publication within a very short period of time and Anna Roig who is a co-author of one of the two recent publications. Both studies have been done together with other ICMAB researchers and collaborators from other institutions. 
                                                                                          

Title: Carbon–Silica Composites to Produce Highly Robust Thin-Film Electrochemical Microdevices
Authors: Pengfei Niu, Laura Asturias-Arribas, Xavier Jordà, Alejandro R. Goñi, Anna Roig, Martí Gich, César Fernández-Sánchez
Citation: Niu, P. et al. Carbon-Silica Composites to Produce Highly Robust Thin-Film Electrochemical Microdevices. Adv. Mater. Technol. 1700163 (2017). 

Title: Piezo-generated charge mapping revealed through direct piezoelectric force microscopy
Authors: A. Gomez, M. Gich, A. Carretero-Genevrier, T. Puig and X. Obradors
Citation: Gomez, A., Gich, M., Carretero-Genevrier, A., Puig, T. & Obradors, X. Piezo-generated charge mapping revealed through direct piezoelectric force microscopy. Nat. Commun. 8, 1113 (2017).
We strongly recommend to read the Peer Review File of this paper published in Nature communications where the exchange of opinions between the authors and the referees is shown. 

New paper accepted in Microchimica Acta

The work has resulted from a collaboration between the ICMAB, the CNM and the company Dropsens.

screen-printed-electrodes

Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite material applied to the detection of heavy metals (Pengfei Niu, César  Fernández-Sánchez,* Martí Gich,* Carla Navarro-Hernández, Pablo Fanjul-Bolado, and Anna Roig, Microchimica Acta, Volume 183, Issue 2, pp 617-623). 

This work reports on the simplified fabrication and on the characterization of bismuth-based screen-printed electrodes (SPEs) for use in heavy metal detection. 
A nanocomposite consisting of bismuth nanoparticles and amorphous carbon was synthesized by a combined one-step sol-gel and pyrolysis process and milled down to a specific particle size distribution as required for the preparation of an ink formulation to be used in screen printing. The resulting electrochemical devices were applied to the detection of Pb(II) and Cd(II) ions in water samples.
T
he porous structure of carbon and the high surface area of the bismuth nanoparticles allow for the detection of Pb(II) and Cd(II) at concentration levels below 4 ppb. The application of the SPEs was demonstrated by quantifying these ions in tap drinking water and wastewater collected from an influent of an urban wastewater treatment plant.