Tag: paper

Hot off the press: paper on Preformed Human Serum Albumin Corona on Iron Oxide Nanoparticles

Congratulations to all the authors of the paper Insights into Preformed Human Serum Albumin Corona on Iron Oxide Nanoparticles: Structure, Effect of Particle Size, Impact on MRI Efficiency, and Metabolization! This work was published online the 19th June 2019 in the journal Applied Biomaterials from the American Society of Chemistry. Do not miss it!

Hot off the press: published paper on Nanoscale Horizons!

Our new publication Nanocellulose films with multiple functional nanoparticles in confined spatial distribution is already out! This work has been published on Nanoscale Horizons and describes a laminated multifunctional bacterial cellulose nanocomposite. Congratulations to all the authors for this original piece of work!

Nanocellulose films with multiple functional nanoparticles in confined spatial distribution

Continue reading

Hot off the press: Published paper in The Journal of Physical Chemistry Letters

Congratulations to Anna Roig and the other co-autors for the paper: Ultrafast Synthesis and Coating of High-Quality β-NaYF4:Yb3+,Ln3+ Short Nanorods.
The paper was been published this November 2017 in The Journal of Physical Chemistry Letters! 

Abstract: An ultrafast route to prepare up-converting single β-phase NaYF4:Yb3+,Ln3+ (Ln: Er, Tm, or Tb) short nanorods (UCNRs) of high quality was developed. This new procedure affords reactive surface nanorods that are easily coated by direct injection of suitable capping ligands. Thus highly crystalline nanorods with excellent UC fluorescence and good solvent-selective dispersion are obtained, which represents a significant advance in the field and enlarges their use for biomedical and other technological applications. Unlike other methodologies, the short reaction time provides a kinetic control over crystallization processes, and the β-phase and rod morphology is preserved regardless of the optically active Ln3+ ion. The UC emission was finely tuned by using the most popular Yb3+/Tm3+ and Yb3+/Er3+ pairs. More importantly, UCNRs doped with the unusual Yb3+/Tb3+ pair, with no ladder-like energy levels, provided a nice emission upon near-infrared excitation, which constitutes the first example of phonon-assisted cooperative sensitization to date in pure β-NaYF4 nanocrystals.

Hot off the press: Published paper in “Small”

Congratulations to Martí Gich, tenured researcher at the N&N group, and the rest of the authors for the recently published paperElectric and Mechanical Switching of Ferroelectric and Resistive States in Semiconducting BaTiO3–δ Films on Silicon. Moreover, the paper was on the cover of the journal Small (Volume 13, Issue 39, October 18, 2017).

Abstract:
In article number 1701614, Andrés Gómez, Adrián Carretero-Genevrier, and co-workers report a novel approach to integrate epitaxial nanostructured n-type semiconducting BaTiO3−δ films on silicon by combining molecular beam epitaxy and a water-based chemical method. This growth strategy results into epitaxial BaTiO3−δ/La0.7Sr0.3MnO3/SrTiO3/Si columnar nanostructures that enhance the flexoelectric response of the system and enables the control of the ferroelectric polarization and local conductivity (resistive switching) of this functional oxide upon applying a mechanical load.

Paper in collaboration with ICN2 in RSC Advances

Dual T1/T2 MRI contrast agent based on hybrid SPION@coordination polymer nanoparticles

The study GAby M. Borges, S. Yu, A. Laromaine, A. Roig, S. Súarez-García, J. Lorenzo,D. Ruiz-Molina and F. Novio* has just been published in RSC Advances 2015, 5, 86779–86783.

The paper reports a novel hybrid T1/T2 dual MRI contrast agent by the encapsulation of SPIONs (T2 contrast agent) into an iron-based coordination polymer with T1-weighted signal. This new hybrid material presents improved relaxometry and low cytotoxicity, which make it suitable for its use as contrast agent for MRI.

 

 

Hot off the press: new Nanoscale paper published

nanoscale_2013_oanapascuA Nanoscale paper on “Ultrafast continuous synthesis of crystalline ferrite nanoparticles in supercritical ethanol” (Oana Pascu, Samuel Marre, Cyril Aymonier and  Anna Roig) has recently been published. It is the result from the collaboration with the group of Cyril Aymonier from the ICMB-CNRS in Bordeaux, where Oana Pascu spent an internship during her Ph.D. and now she holds a post-doctoral contract.

Nanoscale 5 (2013) 2126-2132, DOI: 10.1039/c3nr33501a

Magnetic nanoparticles (NPs) are of increasing interest in various industrially relevant products. For these, the development of greener and faster approaches facilitating scaling-up production is of paramount importance. Here, we report a novel, green and potentially scalable approach for the continuous and ultrafast (90 s) synthesis of superparamagnetic ferrite NPs (MnFe2O4, Fe3O4) in supercritical ethanol (scEtOH) at a fairly moderate temperature (260 °C). ScEtOH exhibits numerous advantages such as its production from bio-resources, its lack of toxicity and its relatively low supercritical coordinates (pc = 6.39 MPa and Tc = 243 °C), being therefore appropriate for the development of sustainable technologies. The present study is completed by the investigation of both in situ and ex situ NP surface functionalization. The as-obtainednanoparticles present good crystallinity, sizes below 8 nm, superparamagnetic behavior at room temperature and high saturation magnetization. Moreover, depending on the capping strategy, the ferrite NPs present extended (for in situ coated NPs) or short-term (for ex situ coated NPs) colloidal stability.