Author: JAGS

Si-Ming Yu

SIMING_YU Ph.D. Student
2012-2015
Thesis: Microwave synthesis of inorganic nanocrystals and their evaluation in biological environments.

 

Pengfei Niu

Pengfei NiuPh.D. Student
2012-2015
Thesis:
Carbon xerogel nanocomposite materials for electrochemical devices: application to heavy metal detection.
After PhD:
Postdoc fellow at NIST, Washington DC, US (2015-2017) Current position: College of Precision Instrument and Opto-electronics Engineering,Tianjin University, China. 

Muling Zeng

zeng_nnPh.D. Student 
2011-2014
Thesis:
Bacterial cellulose: fabrication, characterization and biocompatibility studies.
Current position:
Research fellow, Meldrum Group, School of Chemistry, University of Leeds, United Kingdom. 

Elisa Carenza

carenzaPh.D. Student
2011-2014
Thesis: Engineering iron oxide nanoparticles for angiogenic therapies.
Current position: Clinical Researcher at Addex Therapeutics (startup biopharmaceutical company).

Oana Pascu

oana Ph.D. student 
October 2008-May 2012 
Thesis:
Synthesis of magnetic nanoparticles and strategies towards magneto-photonic materials.
Current position:
Postdoctoral fellow at Universidade Federal Fluminense – Instituto de Química Laboratório MAGMOL, Nitéroi, RJ, Brasil

Nerea Murillo-Cremaes

nereaPh.D. Student
2008-2014
Thesis: Multifunctional silica-based nanoparticles for biomedical applications.
Current position: Researcher at Institute for Bioengineering of Catalonia (IBEC) in the Smart nano-bio devices group (Group leader: Samuel Sánchez).

People

{tab=Group} {module [87]} {tab=Former Members} {module [56]} {tab=Internships and Visitors} {module [32]} {/tabs}

Research

logo nnGroup activity focuses on the controlled and rational synthesis of inorganic and hybrid (inorganic-organic) nanoparticles and nanocomposites and the study of their structural -functional properties. Among others, we are currently interested in the stabilization of metastable phases, the preparation of core-shell nanoparticles, stable colloidal dispersions and porous nanocomposites. Some of the synthetic methods we are using are sol-gel chemistry, supercritical fluids, thermal decompositon or microwaves. We must confess a soft spot for magnetic systems…

We aim at the applicability of our materials in the HEALTH and in the INFORMATION TECHNOLOGIES sectors:

INFORMATION TECHNOLOGIES

  • Magneto-electric materials
  • Magneto-photonic materials
  • Hard-magnetic materials

NANOMEDICINE

  • Contrast Agents for MRI
  • Drug Delivery Vehicles
  • Cell Tracking and Therapy
  • Nanoparticle Assessment in 3D Environments

Current Collaborations:

  • Concha Domingo (ICMAB-CSIC) Drug Delivery Vehicles
  • Anna Rosell/Joan Montaner (Institut de Recerca del Vall d’Hebron) Cell Tracking and Therapy
  • Adrian Carretero/Clement Sánchez (Université Pierre et Marie Curie) Stabilization of metastables phases
  • César Fernández (CNMB-CSIC) Electrochemical sensors
  • Francesco Stellaci (EPFL, Switzerland) Janus particles
  • Pavel Levkin (KIT, Germany) Surface functionalization 
  • Dermot Brougham (Dublin City Universit, Irland) MRI relaxivity studies
  • Gerrit Bochard/Olivier Jordan ( University of Geneva, Switzerland) Polymeric nanocapsules
  •  Gervasi Herranz (ICMAB-CSIC) Magneto-Photonic and Magneto-Plasmonic Materials
  • Cefe López (ICMM-CSIC) Magneto-Photonic Materials
  • José Luis García (ICMAB) Magnetoelectric Materials
  • Cyril Aymonier (ICMCB-CNRS) Magnetic Materials in Supercritical Fluids
  • Liberato Manna (IIT) Complex Magnetic Nanoparticles
  • Irina Smirnova (TU-Hamburg) Magnetic polymeric particles
  • D.-X. Chen (UAB) Relaxation Mechanisms in MRI

 

El CSIC logra efectos ópticos “extraordinarios” en ópalos magnéticos artificiales

magnetoUna investigación del Consejo Superior de Investigaciones Científicas (CSIC) ha diseñado materiales con propiedades ópticas no convencionales gracias al desarrollo de cristales artificiales a base de ópalos magnéticos autoensamblados. Dichas estructuras “aumentan extraordinariamente” la actividad magneto‐óptica para ciertas frecuencias de la luz. El cristal opalino consta de una estructura perfectamente ordenada de esferas huecas de óxido de aluminio (Al2O3) y diámetro aproximado de 300 nanómetros.
El estudio, dirigido por los investigadores del CSIC en el Instituto de Ciencias de Materiales de Bacerlona, Gervasi Herranz y Anna Roig, demuestra que al atravesar estas estructuras se induce en la luz una rotación muy intensa de su plano de polarización para longitudes de onda cercanas al parámetro de red de los ópalos. Este fenómeno podría ser de utilidad para una nueva generación de dispositivos en comunicaciones ópticas.

MORE INFO:
Magnetophotonic Response of Three-Dimensional Opals. José Manuel Caicedo, Oana Pascu, Martín López-García, Víctor Canalejas, Álvaro Blanco, Cefe López, Josep Fontcuberta, Anna Roig*, and Gervasi Herranz*( Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E08193, Bellaterra, Spain, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain).ACS Nano, 2011, 5 (4), pp 2957–2963.DOI: 10.1021/nn1035872