Skip to main content

New article in Small!

The latest collaborative work between Leibniz Research Institute and NNGroup: “A Multisystemic Approach Revealed Aminated Polystyrene Nanoparticles-Induced Neurotoxicity” has been published in Small!

NN group members Amanda Muñoz and Anna Laromaine have colaborated with Natascia Ventura in this research about the characterization of polystyrene (PS) and amine-functionalized PS(PS-NH2) nanoparticles and their evaluation in vitro and in vivo in C. elegans to asses their neurotoxicity.

 

Abstract:

Exposure to plastic nanoparticles has dramatically increased in the last 50 years, and there is evidence that plastic nanoparticles can be absorbed by organisms and cross the blood-brain-barrier (BBB). However, their toxic effects, especially on the nervous system, have not yet been extensively investigated, and most of the knowledge is based on studies using different conditions and systems, thus hard to compare. In this work, physicochemical properties of non-modified polystyrene (PS) and amine-functionalized PS (PS-NH2) nanoparticles are initially characterized. Advantage of a multisystemic approach is then taken to compare plastic nanoparticles effects in vitro, through cytotoxic readouts in mammalian cell culture, and in vivo, through behavioral readouts in the nematode Caenorhabditis elegans (C. elegans), a powerful 3R-complying model organism for toxicology studies. In vitro experiments in neuroblastoma cells indicate a specific cytotoxic effect of PS-NH2 particles, including a decreased neuronal differentiation and an increased Amyloid β (Aβ) secretion, a sensitive readout correlating with Alzheimer’s disease pathology. In parallel, only in vivo treatments with PS-NH2 particles affect C. elegans development, decrease lifespan, and reveal higher sensitivity of animals expressing human Aβ compared to wild-type animals. In summary, the multisystemic approach discloses a neurotoxic effect induced by aminated polystyrene nanoparticles.

Amanda Muñoz, Anna Laromaine, C. elegans, in vitro, in-vivo, neurotoxicity